Ancient Properties of Spider Silks Revealed by the Complete Gene Sequence of the Prey-Wrapping Silk Protein (AcSp1)
نویسندگان
چکیده
Spider silk fibers have impressive mechanical properties and are primarily composed of highly repetitive structural proteins (termed spidroins) encoded by a single gene family. Most characterized spidroin genes are incompletely known because of their extreme size (typically >9 kb) and repetitiveness, limiting understanding of the evolutionary processes that gave rise to their unusual gene architectures. The only complete spidroin genes characterized thus far form the dragline in the Western black widow, Latrodectus hesperus. Here, we describe the first complete gene sequence encoding the aciniform spidroin AcSp1, the primary component of spider prey-wrapping fibers. L. hesperus AcSp1 contains a single enormous (∼19 kb) exon. The AcSp1 repeat sequence is exceptionally conserved between two widow species (∼94% identity) and between widows and distantly related orb-weavers (∼30% identity), consistent with a history of strong purifying selection on its amino acid sequence. Furthermore, the 16 repeats (each 371-375 amino acids long) found in black widow AcSp1 are, on average, >99% identical at the nucleotide level. A combination of stabilizing selection on amino acid sequence, selection on silent sites, and intragenic recombination likely explains the extreme homogenization of AcSp1 repeats. In addition, phylogenetic analyses of spidroin paralogs support a gene duplication event occurring concomitantly with specialization of the aciniform glands and the tubuliform glands, which synthesize egg-case silk. With repeats that are dramatically different in length and amino acid composition from dragline spidroins, our L. hesperus AcSp1 expands the knowledge base for developing silk-based biomimetic technologies.
منابع مشابه
Recombinant Minimalist Spider Wrapping Silk Proteins Capable of Native-Like Fiber Formation
Spider silks are desirable biomaterials characterized by high tensile strength, elasticity, and biocompatibility. Spiders produce different types of silks for different uses, although dragline silks have been the predominant focus of previous studies. Spider wrapping silk, made of the aciniform protein (AcSp1), has high toughness because of its combination of high elasticity and tensile strengt...
متن کاملMolecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.
Araneoid spiders use specialized abdominal glands to produce up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode aciniform fibers (wrapping silk) and the mechanical properties of these fibers have not been characterized previously. To gain a better understanding of the molecular radiation of spider silk fibroin genes, cDNA lib...
متن کاملIdentification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk.
Spider silks are outstanding biomaterials with mechanical properties that outperform synthetic materials. Of the six fibrillar spider silks, aciniform (or wrapping) silk is the toughest through a unique combination of strength and extensibility. In this study, a wet-spinning method for recombinant Argiope trifasciata aciniform spidroin (AcSp1) is introduced. Recombinant AcSp1 comprising three 2...
متن کاملSpider wrapping silk fibre architecture arising from its modular soluble protein precursor
Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope tr...
متن کاملMicrodissection of black widow spider silk-producing glands.
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 30 شماره
صفحات -
تاریخ انتشار 2013